miércoles, 15 de enero de 2014

SILOGISMO

INTRODUCCIÓN


En este ensayo sobre silogismo interpretaremos su lectura como una rama muy importante de la lógica. No solo por obtener una investigación se hace interesante realizarla, sino que su contenido amplia los horizontes y la cultura de quienes la realizan. Conocer sobre la vida y obra de pensadores como: Kant, Bacón, Descartes, Comte. Hegel, Engels y Marx, nos hace saber que mucho antes de la aparición de grandes tecnologías mecanizadas hombres como estos ya tenían en sus manos grandes metodologías, pensamientos y sistemas del conocimientocomportamiento y actividad del ser humano. Además muchas de las doctrinas propuestas por estos se utilizan a diario en muchos ámbitos. Para comprender esta investigación entramos en la teoría silogismo como argumento que consta de tres proposiciones, la última de las cuales se deduce necesariamente de las otras dos, las dos primeras se llaman premisas y la tercera conclusión, para que sobre esta base se conozca el método deductivo.

Conoceremos los pasos del silogismo desde su descubrimiento por Aristóteles. Conocer el objeto material de el silogismo su estructura funciones logrando establecer formulas de el silogismo reconocer los diferentes tipos de silogismo, la simbolización con que se abrevian utilizando el sistema de símbolos con que se utilizan diferentes conceptos y procesosempleo sistemático de los símbolos y elementos de este. Como podremos interpretarlo es una forma de razonamiento. Hay muchas clases de razonamientos, que ya fueron estudiados y clasificados por Aristóteles en el siglo IV a. d. c. El recorrido de deconstrucción y análisis del silogismo será lo que explicite en las páginas siguientes. Este trabajo intenta, además de ser un modesto aporte de recopilación teórica, así también, un pequeño tributo al modelo silogístico. Poco si pensamos que aún hoy, en la posmodernidad docentes y alumnos de distintos niveles educativos siguen con rigor enseñando y aprendiendo este complejo arte de pensar.



DESARROLLO

SILOGISMO



El silogismo es una forma de razonamiento deductivo que consta de dos proposiciones como premisas y otra como conclusión, siendo la última una inferencia necesariamente deductiva de las otras dos. Fue formulado por primera vez por Aristóteles, en su obra lógica recopilada como el organon, de sus libros conocidos como primeros analíticos, (en griego proto analytika, en latín –idioma en el que se conoció la obra en europa occidental-, analytica priora). Aristóteles consideraba la lógica como lógica de relación de términos. Los términos se unen o separan en los juicios. Los juicios aristotélicos son considerados desde el punto de vista de unión o separación de dos términos, un sujeto y un predicado. Hoy se hablaría de proposición.
La diferencia entre juicio y proposición es importante. La proposición afirma un hecho como un todo, que es o no es, como contenido lógico del conocimiento. El juicio, en cambio, atribuye un predicado a un sujeto lógico del conocimiento otorgando a los términos al mismo tiempo una función lingüística de significado (semántica) y una función formal lógica (sintáctica). Esto tiene su importancia en el concepto mismo del contenido de uno, el juicio, y la otra, la proposición, especialmente en los casos de negación, como se considera, más adelante, en la problemática de la lógica silogística.
Mantenemos aquí la denominación de juicio por ser lo más acorde con lo tradicional, teniendo en cuenta que este tipo de lógica, como tal, está en claro desuso, sustituida por la lógica simbólica en la que esta lógica es interpretada como lógica de clases.  
La relación entre los términos de un juicio, al ser comparado con un tercero que hace de "término medio", hace posible la aparición de las posibles conclusiones. Así pues, el silogismo consta de dos juicios, premisa mayor y premisa menor, en los que se comparan tres términos, de cuya comparación se obtiene un nuevo juicio como conclusión.
El juicio de términos es la comparación de dos conceptos, bien sea de forma lógica o extraída de la experiencia, mediante la cual creemos o afirmamos la relación de uno con respecto al otro como verdad objetiva. Así se justificaba la creencia verdadera en los juicios aristotélicos de la lógica clásica.
                 Por ejemplo: en la nieve es blanca, la mente se afirma en que la blancura es una propiedad que se puede predicar con verdad de la nieve.1 tal ha sido la consideración de los juicios aristotélicos en el silogismo de la lógica tradicional.
Hoy día la lógica formal y simbólica no acepta tales juicios que se interpretan como creencia pues no requiere su formulación lingüística o conceptual, como ya consideraron los escolásticos y por otro lado la posibilidad de un categórico, como pensaba aristóteles, está seriamente cuestionada.
Actualmente, en la lógica tal relación se considera formalmente:
Ø  Como resultado de dominio de discurso de la relación de dos clases lógicas.
Ø  Como la atribución de un predicado a una variable lógica individual cuantificada.

Los juicios aristotélicos


definición y elementos del silogismo
El juicio aristotélico considera la relación entre dos términos:
          un sujeto, s, y un predicado, p.
Los términos pueden ser tomados en su extensión universal: abarca a todos los posibles individuos, el dominio de discurso, a los cuales pueda referirse el concepto.
O en su extensión particular: cuando sólo se refiere a algunos.
Los juicios por la extensión en la que es tomado el término sujeto, como criterio de cantidad, pueden ser:
Universales: todo s es p
Particulares: algunos s son p
Nota: los nombres propios tienen extensión universal; pues el uno, como único, equivale a un individuo que siendo único es, por eso, todos los posibles.
La relación entre los términos puede ser asimismo:
Afirmativos: de unión: s es p.
Negativos: de separación: s no es p.
El predicado de una afirmación siempre tiene extensión particular, y el predicado de una negación está tomado en su extensión universal. Cuando un concepto, sujeto o predicado, está tomado en toda su extensión se dice que está distribuido; cuando no, se dice que está no distribuido.
Según el criterio de cantidad y cualidad, resulta la siguiente clasificación de los juicios:
CLASE
DENOMINACIÓN
ESQUEMA
EXPRESIÓN-EJEMPLO
Extensión de los términos
A
Universal Afirmativo
Todo S es P
Todos los hombres son mortales
S: Universal P: Particular
E
Universal Negativo
Todos los S no son P
Ningún hombre es mortal
S: Universal P: Universal
I
Particular Afirmativo
Algún S es P
Algún hombre es mortal
S: Particular P: Particular
O
Particular Negativo
Algún S no es P
Algún hombre no es mortal
S: Particular P: Universal


Los juicios se relacionan unos con otros en lo que constituye un argumento.
El silogismo argumenta estableciendo la conclusión como una relación entre dos términos, establecida como resultado de la comparación de ambos términos con un tercero (tertium comparationis).
Por eso se define:
Silogismo es la argumentación en la que a partir de un antecedente, (dos juicios como premisas), que compara dos términos, (sujeto y predicado de la conclusión), con un tercero, (término medio), se infiere o deduce un consecuente, (un juicio como conclusión), que une, (afirma), o separa, (niega), la relación de estos términos, (sujeto y predicado), entre sí.

ANTECEDENTE = Dos premisas:

Premisa mayor, en la que se encuentra el término mayor, que es el predicado de la conclusión, que se representa como P.
Premisa menor, en la que se encuentra el término menor, que es el sujeto de la conclusión, que se representa como S.
Entre ambas se realiza la comparación del término sujeto y el término predicado con respecto al término medio, que se representa como M.

CONSECUENTE = Una conclusión:
En la que se establece la relación entre el término sujeto S, y el término predicado P.

TÉRMINOS:
Término mayor: Es el predicado de la conclusión. La premisa en la que se encuentra se llama premisa mayor. Se representa como P.
Término menor: Es el sujeto de la conclusión. La premisa en la que se encuentra se llama Premisa menor. Se representa como S.
Término medio: Que sirve de comparación (tertium comparationis) y no puede estar en la conclusión. Se representa como M.

Figuras y modos silogísticos
Teniendo en cuenta la disposición de los términos en las premisas y en la conclusión se pueden dar las siguientes FIGURAS SILOGÍSTICAS, que se denominan:
  
1ª FIGURA
2ª FIGURA
3ª FIGURA
4ª FIGURA
M P
P M
M P
P M
Premisa mayor
S M
S M
M S
M S
Premisa menor
S P
S P
S P
S P
Conclusión

Los modos son las distintas combinaciones que se pueden hacer con los juicios que entran a formar parte de las premisas y la conclusión. Como estos juicios tienen cuatro tipos distintos (A,E,I,O), y en cada caso se toman de tres en tres —dos premisas y una conclusión— hay 64 combinaciones posibles.
Estas 64 combinaciones posibles quedan reducidas a 19 modos válidos, al aplicar las reglas del silogismo.
Reglas para los términos
1.    El silogismo no puede tener más de tres términos.


Esta ley se limita a cumplir la estructura misma del silogismo: La comparación de dos términos con un tercero. Aunque la regla es clara, su aplicación no siempre lo es. Es lo que algunos llaman silogismo de cuatro patas. Ver quaternio terminorum.
Consideremos el siguiente silogismo:
ü  Los hombres son esencialmente libres.
ü  Las mujeres no son hombres.
ü  Las mujeres no son libres.
Los términos que aparecen como evidentes son las palabras hombre, libre, mujer. Pero, a modo de un non sequitur en la supuesta premisa mayor se utiliza la palabra hombre en su acepción de especie (Homo sapiens) mientras que en la supuesta premisa menor del quaternio terminorum se ha trocado el significado de la palabra hombre utilizando la acepción de [sexo] (hombre como sinónimo de varón), es decir se ha incluido subrepticiamente un cuarto término, de allí que la conclusión del quaternio terminorum es errónea, un sofisma. Si se observa bien, en el ejemplo dado de quaternio terminorum se ha expresado de un modo entimemático.
2.    Los términos no deben tener mayor extensión en la conclusión que en las premisas.
Por la misma estructura del silogismo; únicamente podremos obtener conclusiones acerca de lo que hemos comparado en las premisas.
3.    El término medio no puede entrar en la conclusión.
Por la misma estructura del silogismo la función del término medio es servir de intermediario, como término de la comparación.
4.    El término medio ha de tomarse en su extensión universal por lo menos en una de las premisas.
Para que la comparación sea tal, es necesario que el término medio sea comparado en su totalidad. De otra forma, podría ser comparado un término con una parte y el otro con la otra, constituyéndose en realidad entonces un silogismo de cuatro términos.
ü  Todos los andaluces son españoles.
ü  Algunos españoles son gallegos.
ü  Por tanto, algunos gallegos son andaluces.
Lo que evidentemente no es un modo válido, puesto que "españoles" en la premisa mayor al ser predicado de una afirmativa está tomado en su extensión particular.
Reglas de las premisas
a.    De 2 premisas negativas no puede obtenerse conclusión alguna.
Dos premisas negativas no se adaptan a la estructura del silogismo, ya que si negamos S de M, y P de M, no sabemos qué relación puede haber entre S y P. Para establecer la relación, por lo menos uno de los términos tiene que identificarse con M. Por tanto una de las dos premisas tiene que ser afirmativa.
b.    De dos premisas afirmativas no puede sacarse una conclusión negativa.
En efecto, si S se identifica con M, y P también se identifica con M, no tiene sentido establecer una relación negativa con entre S y P. La conclusión será afirmativa.
c.    La conclusión siempre sigue la peor parte. Entendiendo por peor parte, la negativa respecto a la afirmativa y lo particular respecto a lo universal.
Veamos los dos casos separadamente:
A) Conclusión negativa de una premisa afirmativa y la otra negativa.
Si se afirma una relación entre dos términos (X, M), pero se niega la de uno de ellos con otro (Y, M), siendo M el término medio, no puede haber más conclusión que negar la relación que pueda haber entre el primero (X) y el último (Y) siendo uno sujeto y el otro predicado de la conclusión.
B) Conclusión particular de una premisa universal y otra particular (teniendo en cuenta que dos premisas particulares no puede ser, como veremos en la regla siguiente).
Pueden darse dos casos: Que una sea afirmativa y la otra negativa, o que las dos sean afirmativas.
1º) Dos afirmativas. (Tenemos que recordar que el predicado de una afirmativa está tomado en su extensión particular, y el predicado de una negativa en su extensión universal).
Al ser las dos afirmativas sus predicados son particulares. El término de la universal tiene necesariamente que ser el término medio, la conclusión tiene que tener un sujeto particular.
2º) Una afirmativa y otra negativa: Tiene que haber dos términos universales. Uno de ellos tiene que ser el término medio, el otro tiene que ser el predicado de la conclusión, pues la conclusión tendrá que ser negativa, (caso a) de esta misma regla). Por tanto el término que queda será el sujeto de la conclusión con extensión particular.
·         De dos premisas particulares no se saca conclusión.
También tiene dos casos posibles: que una sea afirmativa y la otra negativa o que las dos sean afirmativas.
A) Afirmativa y negativa: Algún A es B - Algún A no es C.
Sólo hay un término universal que es el predicado de la negativa, que por tanto tiene que ser el término medio. La conclusión tendrá que ser negativa (caso a) de la regla anterior), y por tanto el predicado tendrá que ser universal, y no puede ser el término medio por tanto no puede haber conclusión.
B) Dos afirmativas: Algún A es B - Algún A es C.
Los tres términos son particulares, y por tanto no puede haber término medio con extensión universal, y por tanto no hay conclusión posible.
Los modos válidos
Modo del silogismo es la forma que toma éste de acuerdo con la cantidad y la cualidad de las premisas y la conclusión. De la aplicación de las leyes de los silogismos a los 64 modos posibles resultan válidos solamente 19 y son los que tradicionalmente se memorizan atendiendo a los modos válidos de cada figura con sus premisas y conclusión.
  
Así los modos válidos
Se memorizaban cantando
De la primera figura
AAA, EAE, AII, EIO
BARBARA, CELARENT, DARII, FERIO
De la segunda figura
EAE, AEE, EIO, AOO
CESARE, CAMESTRES, FESTINO, BAROCO
De la tercera figura
AAI, IAI, AII, EAO, OAO, EIO
DARAPTI, DISAMIS, DATISI, FELAPTON, BOCARDO, FERISON
De la cuarta figura
AAI, AEE, IAI, EAO, EIO
BAMALIP, CAMENES, DIMATIS, FESAPO, FRESISON

  • Nota bene: También son válidos para la primera figura los modos subalternos BARBARI, CELARONT; para la segunda: CESARO, CAMESTROP; y para la cuarta: CAMENOP.

Resolución de los modos mediante un algoritmo mecánico:
Cartas silogísticas.- Consiste en un juego de dieciséis cartas, ocho mayores y ocho menores. En cada carta mayor figura en primera línea una posible premisa mayor y debajo posibles conclusiones. La primera línea de las cartas menores llevan una posible premisa menor, y en sus partes medias unas aberturas.
Colocando una carta menor sobre una mayor como si fuera una combinación de premisas, aparece en la abertura correspondiente una conclusión si es modo válido, o ninguna si no lo es (carta 8 menor).
Convención para la representación gráfica del juicio tipo A.
Se pueden representar estos modos mediante diagramas de Venn con las siguientes convenciones:
v  Cada término del silogismo está representado por S, P, M, por un círculo incoloro que representa a todos los miembros posibles de una clase.
v  La conclusión aparece como resultado de la relación de los términos S y P en su relación con M.
v  La inexistencia se muestra como zona rellena de color.
v  La existencia individual se afirma mediante una X: Al menos uno, o algunos.
v  La relación de los términos se constituye como pertenencia o no pertenencia a la clase.
v  La relación de inclusión, Todo S es P, se representa como “No hay ningún S que no sea P” según muestra la imagen que se muestra al margen.
Teniendo en cuenta la problemática de la lógica aristotélica, de la que se habla más adelante, el problema del "compromiso existencial" afecta a los modos Darapti, Felapton, Bramalip, y Fesapo que no se muestran en las gráficas, al no ser admitidos como válidos por algunos y, sobre todo, la representación gráfica no hace plausible la conclusión, debido a la falta de "compromiso existencial", como se comenta más adelante.
La problemática de la lógica silogística.- La exposición anterior es la forma más simple y esquemática tradicionalmente presentada como lógica aristotélica.
Sin embargo, la problemática que trata Aristóteles es bastante más compleja. Aristóteles define:
  • Silogismo es un argumento en el cual, establecidas ciertas cosas, resulta necesariamente de ellas, por ser lo que son, otra cosa diferente. Aristóteles An. Pr. I 24 b 18-23
Dos aspectos a destacar en su definición:
·         La necesidad, que considera el silogismo como categórico, por considerar que los juicios que lo integran son asimismo categóricos.
·         El fundamento de dicha necesidad, por "ser las cosas lo que son".
Hablar del silogismo categórico supone hablar de lo necesario e incondicionado. Y precisamente incondicionado por estar basado en el “ser de las cosas”.
Aristóteles está pensando en un predicado aprehendido a partir de la experiencia y atribuido por el entendimiento a un sujeto. En el lenguaje apofántico el silogismo manifiesta la verdad, porque el entendimiento humano (entendimiento agente, según Aristóteles) es capaz de llegar a la intuición directa de lo real aunque sea a través de un proceso de abstracción. Se parte del supuesto de que P es predicado “verdadero” de S (en el sentido de que P manifiesta la "identidad" del ser de S), lo que plantea una cuestión metalógica.  
Aristóteles piensa que el juicio manifiesta “lo que es” como verdadero. El problema entonces es ¿y cómo se predica de un sujeto lo que “no-es”? La lógica aristotélica se encuentra con el problema de los juicios negativos que resuelve no del todo bien.
De hecho en el cuadro de oposición de los juicios Aristóteles estudió con todo detalle problemas que posteriormente no se han tenido en cuenta; en realidad consideró tres figuras y no todos los 19 modos válidos. Incluso llegó a considerar tales modos como los axiomas de todo el sistema lógico.


El juicio como “atribución” de un predicado verdadero a un sujeto, (en el sentido de que P manifiesta la "identidad" como "ser del sujeto", en tanto que realidad conocida), plantea el problema de un predicado falso, es decir un no-predicado. ¿Cómo conocemos un no-predicado?...
Lingüísticamente, el problema se disfraza negando el verbo en lugar del predicado como atributo (gramática). De esta forma en vez de decir "Antonio es un no-caballo", (¿qué es un no-caballo?), decimos "Antonio no es un caballo". Pero esto segundo sólo es inteligible bajo el punto de vista extensional de los conceptos, es decir bajo el punto de vista de ser un elemento de un conjunto definido por una propiedad, o lo que es lo mismo por su pertenencia o no-pertenencia a una determinada clase; lo que nos lleva a la lógica de clases.
La lógica moderna simbólica, meramente lógica formal, no tiene conexión con contenido de verdad alguno y supera con claridad estas dificultades; sobre todo con la ventaja de poder tratar proposiciones poliádicas, llamadas así porque tienen más de dos términos (por ejemplo: "Júpiter es mayor que la Tierra y menor que el Sol"), y facilitar enormemente el cálculo lógico, por lo que, de hecho, la lógica aristotélica, como tal, está en claro desuso.
Hans Reichenbach estudia el cuadro de oposición de los juicios considerando los juicios A, E, I, O, como relación de clases y considera que pueden eliminarse los juicios negativos E, O, que son los problemáticos, mediante la anotación de la negación de la clase complementaria.
La notación se hace estableciendo entre el sujeto S y el predicado P, la letra minúscula correspondiente al tipo de juicio. Así tenemos que:
Así no sólo se simplifica la notación sino que de modos que tradicionalmente han sido considerados inválidos, se puede obtener conclusión válida, que la notación clásica hacía imposible. Por todo ello la interpretación actual de la lógica aristotélica como silogismo es su interpretación como lógica de clases. Tal es el mérito de la obra de Lukasiewicz. Pero considerar los conceptos universales, como clases plantea el problema de la existencia del individuo como instanciación o compromiso existencial. Pues la clase como propiedad independiente puede considerarse como abstracto universal. Pero los predicados, como atributos, no tienen sentido sin un sujeto gramatical del cual se prediquen porque posea dichapropiedad.
La lógica tradicional no consideraba el problema de la existencia o no existencia del individuo respecto a los conceptos universales, pues se supone que éstos han surgido de la abstracción a partir del conocimiento de los singulares o individuos existentes.
El silogismo considerado en la lógica formal.- La lógica formal actual considera la relación S y P como una relación meramente sintáctica sin contenido material alguno, bien sea en una relación de clases o una función proposicional de predicados. Aristóteles considera dicha formalidad, desde luego, bajo el punto de vista de la relación entre dos términos S (sujeto) y P (predicado) que al mismo tiempo tienen una función lingüístico-gramatical, pues para Aristóteles los términos representan aspectos del ser y por tanto de la realidad.
Pero la formalidad de la lógica actual convierte la deducción en una inferencia, como consecuencia lógica, en lugar de una implicación con transmisión de contenido en un lenguaje apofántico-transmisor de la verdad como pretendía Aristóteles para el lenguaje de la ciencia. Lo que, no cabe duda, es una transformación no menor de la lógica aristotélica.
Entimema (< latín enthymēma < griego ἐνθύμημα o enthumēma [en + thumos (mente) - 'que ya reside en la mente']) es el nombre que recibe un silogismo en el que se ha suprimido alguna de las premisas o la conclusión, por considerarse obvias o implícitas en el enunciado. Al entimema se le conoce también como Silogismo Truncado.
Estructura y usos.-En general, el entimema debe constar de menos proposiciones (una Antecedente y otra Consiguiente) de las que constituyen el silogismo ordinario, en vista de que en el lenguaje cotidiano se formulan razonamientos suprimiendo expresiones que se dan por sabidas en el oyente.
Dentro de la retórica, el entimema resulta un recurso vital para dotar de agilidad y claridad expositiva al discurso, aunque con frecuencia sirva también para disfrazar la falacia. Al presuponer el conocimiento de determinadas premisas o su deducción por parte del auditorio, el orador puede evitar digresiones innecesarias en el hilo del discurso.
Tipos de entimemas.- En función de la premisa que se omita, los entimemas pueden clasificarse como de:
·         Primer orden, que carece de la premisa mayor.
·         Segundo orden, que carece de la premisa menor.
Ejemplos:
He aquí un entimema de primer orden: Como hombre que es, Sócrates es mortal, en el que se ha omitido la premisa mayor: Todos los hombres son mortales. Si se exponen las tres proposiciones del silogismo, quedan:
Premisa mayor - Todos los hombres son mortales (omitida).
Premisa menor - Sócrates es hombre.
Conclusión - Sócrates es mortal.
Y como ejemplo de entimema de segundo orden: Todos los hombres son mortales. Por tanto, Sócrates es mortal. En este caso, la premisa omitida es la menor, Sócrates es hombre, luego:
Premisa mayor - Todos los hombres son mortales.
Premisa menor - Sócrates es hombre (omitida).
Conclusión - Sócrates es mortal.
El entimema erróneo
Tal como se ha indicado, el entimema puede implicar una falacia o, en todo caso, conlleva el riesgo de una paralogía. El tipo de pensar entimemático es bastante frecuente.
Ejemplo de entimemas erróneos son los siguientes:
"La justicia se equivoca"
"La política es mala"
El "razonamiento" falaz (o en el mejor de los casos paralógico) de la primera expresión está dado en esta confusión planteada tácitamente como si fuera un silogismo correcto:
El poder judicial aplica la justicia.
(El poder judicial en muchas ocasiones se equivoca).
"La justicia se equivoca".
El error del anterior entimema se descubre cuando se analiza el supuesto silogismo con el que está planteado: se confunde justicia con poder judicial.
El segundo entimema erróneo oculta el siguiente esquema:
La política implica a los políticos.
(Muchos políticos son malos).
"La política es mala".
En este caso ya la premisa mayor es una falsedad al plantear (en otro entimema) a la política sólo como cuestión de políticos (cuando en verdad la política incumbe a todo ser humano en sociedad), se agrava el entimema cuando la premisa correcta "muchos políticos son corruptos" es tácitamente transformada en "todos los políticos son corruptos", de este modo sale la conclusión falsa (aunque su falsedad está ocultada por la enunciación entimemática): "la política es corrupta".
Esta clase de paralogía es frecuente en el discurso común —disfrazado de «sentido común»— precisamente por el mal uso de los entimemas.
Razonamientos categóricos condicionales y entimemas.- Un razonamiento categórico condicional es un silogismo en el cual una de las premisas es un juicio condicional y la otra un juicio categórico común. Por ejemplo:
  • J. Condic.:Si por un material conductor circula electricidad, el conductor se calienta.
  • J. Categ. :Por el material conductor circula electricidad.
  • El material conductor se calienta.
Tal tipo de razonamiento tiene sólo dos modos correctos: el afirmativo (modus ponendo ponens -modo poniendo-) y el que niega (modus tollens-modo quitando-), para más precisiones al respecto véase silogismo.
Sin embargo los razonamientos categóricos condicionales se expresan a menudo en forma de entimemas omitiendo en la mayoría de los casos la premisa o juicio condicional, de este modo pueden ocurrir paralogismos como el siguiente:
"Este sujeto no es abogado puesto que es juez".
En forma completa tal razonamiento categórico condicional es:
Si este sujeto es un juez no es sólo abogado.
Este sujeto es un juez.
(Conclusión errónea): [Ergo] este sujeto no es abogado.



El entimema en la actualidad.- En realidad el entimema más bien configura una situación retórica, en la que por elegancia, por brevedad, pero sobre todo por suponer en el auditorio una inteligencia suficiente como para suplir lo que falta, se suprime algo que está ahí, en la consideración del oyente, y por tanto no supone ningún problema especial con respecto al silogismo.
Esta alusión a la retórica hace que algunos entiendan también entimema como “argumento probable”, pero eso no siempre es así, sino que depende de lo que se exprese como implícito.
Naturalmente en la lógica actual ciertas supresiones que serían aceptables en la silogística clásica tradicional, hoy no pasarían, efectivamente, sino por argumento meramente probables.

Silogismo hipotético

En lógica se denomina silogismo hipotético a aquel tipo de silogismo o más bien regla de inferencia que en su expresión plantea un caso hipotético, por lo cual puede tener términos válidos o no. En la lógica proposicional un silogismo hipotético puede expresar una regla de inferencia, mientras que en la historia de la lógica los silogismos hipotéticos han sido una antelación de la teoría de las consecuencias.

En lógica proposicional silogismo hipotético es un argumento válido si sigue la siguiente forma argumental:

P → Q.
Q → R.
Entonces (ergo), P → R.
Con operadores lógicos, esto se expresa:
            Donde \vdash representa la aserción lógica.
En otro términos, en este tipo de argumentos si A implica a B, y B implica a C, transitivamente el primero (A) implica al tercero (C). Un ejemplo de silogismo categórico es el siguiente:
Si no me despierto, no puedo ir a la fiesta.
Si no voy a la fiesta, no me divertiré.
Entonces, si no me despierto no me divertiré.
Nótese que el carácter condicional facilita, aunque no necesariamente, una posible falacia. En el caso dado se está implicando [→] casi absolutamente una posible fiesta con una posible diversión.
Los silogismos categóricos poseen la ventaja de poder ser contrafácticos; estos pueden tener conclusiones ciertas incluso si poseen premisas que se «conocen» falsas.
El sorite.-  es un recurso estilístico usado habitualmente en la retórica. Se trata de un razonamiento resultado de la concatenación de varios enunciados verdaderos, siendo el sujeto de cada uno el predicado del anterior.
Partiendo de unas premisas verdaderas se puede ir introduciendo retórica, fácil y gradualmente una falsedad, en cuanto se falte a alguna regla silogística de forma capciosa.
Su nombre viene de la paradoja de sorites.

Sorites o polisilogismo.- Recibe también el nombre de Sorites la concatenación de silogismos (polisilogismo), de dos formas diferentes:

  • El predicado de cada proposición (como premisa) es el sujeto de la proposición siguiente (como premisa), siendo idénticos el sujeto de la premisa mayor y el de la conclusión.
A es B; B es C; C es D; D es E; luego A es E. (Siendo A,B,C,D,E los términos de las premisas)
Por ejemplo: Todos los ecijanos son sevillanos; todos los sevillanos son andaluces; todos los andaluces son españoles; todos los españoles son europeos. Por tanto todos los ecijanos son europeos.

Ejemplo:
          Toda flor es vegetal
          Todo vegetal es ser vivo
          Todo ser vivo es sensible
          Todo ser sensible posee alma
          Toda flor posee alma.
  • Un polisilogismo en el que se sobreentiende la conclusión de cada silogismo, salvo la última que se hace explícita.
Por ejemplo: Los europeos son occidentales; los españoles son europeos; los andaluces son españoles; los sevillanos son andaluces. Por tanto los andaluces son occidentales.

Historia
                                                             LÓGICA CLÁSICA


El nacimiento de la lógica propiamente dicho está directamente relacionado con el nacimiento intelectual del ser humano. La lógica emerge como mecanismo espontáneo en el enfrentamiento del hombre con la naturaleza, para comprenderla y aprovecharla. Poncairé destaca cinco etapas o revoluciones en ese proceso que se presentan entre dos grandes tópicos: del rigor y la formalidad, a la creatividad y el caos. Las etapas se identifican como: Revolución Matemática, Revolución Científica, Revolución Formal y Revolución Digital además de la próxima y prevista Revolución Lógica.

Lógica Matemática
La lógica matemática cuestiona con rigor los conceptos y las reglas de deducción utilizados en matemáticas lo que convierte la lógica en una especie de metamatemática. Una teoría matemática considera objetos definidos -enteros, por ejemplo- y define leyes que relacionan a estos objetos entre sí, los axiomas de la teoría. De los axiomas se deducen nuevas proposiciones -los teoremas-, y a veces, nuevos objetos. La construcción de sistemas formales -formalización, piedra angular de la lógica matemática-, permite eliminar la arbitrariedad en la elección de los axiomas y definir explícita y exhaustivamente las reglas de la deducción matemática.
Las matemáticas y la lógica
Del año 600 ac hasta 300 ac se desarrollan en Grecia los principios formales de las matemáticas. Este periodo clásico lo protagonizan Platón, Aristóteles y Euclides. Platón propone ideas o abstracciones. Aristóteles resuelve el razonamiento deductivo y sistematizado. Euclides es el autor que establece el método axiomático. En los Elementos Euclides organiza las pruebas deductivas de que dispone dentro de una estructura sistemática, rigurosa, altamente eficaz.

1.- Platón
Platón, 427ac - 347 a.c., propone instaurar en Siracusa una utópica república dirigida por filósofos. Crea la Academia de Atenas que no era solo una institución filosófica, sino centro de formación política para jóvenes aristócratas. Según algunos especialistas, Platón edifica su teoría del conocimiento con el fin de justificar el poder emergente de la figura del filósofo. Sostiene la existencia de dos mundos -el mundo de las ideas y el de mundo físico de los objetos. Según Platón, lo concreto se percibe en función de lo abstracto y por tanto el mundo sensible existe gracias al mundo de las ideas. Platón escoge el formato diálogo como forma de transmisión del pensamiento.
2.-Aristóteles
Los tratados de lógica de Aristóteles, 384ac - 332 a.c, conocidos como organón, contienen el primer tratado sistemático de las leyes de pensamiento para la adquisición de conocimiento. Representan el primer intento serio que funda la lógica como ciencia. Aristóteles no hace de la lógica una disciplina metafísica sino que establece correspondencias recíprocas entre pensamiento lógico y estructura ontológica. El silogismo fue adoptado por los escolásticos que representan el sistema teológico-filosófico, característico de la Edad Media. La escolástica, sin embargo, acabó por sobrecargar la teoría del silogismo, lo que acarreó su descrédito a partir del Renacimiento. Los lógicos de la edad moderna como Ramée, Arnauld, Nicole, Leibniz, Euler, y Lambert procuraron simplificarla al máximo, y su tratamiento matemático se completó hasta principios del siglo XX con Boole, De Morgan, Frege y Russell. Desde entonces el silogismo se incluye en la lógica de predicados de primer orden y en la lógica de clases, y ocupa en la ciencia lógica un papel mucho menor que en otros tiempos.
3.- Euclides
Matemático alejandrino autor de la universal obra, los célebres Elementos. Uno de los textos matemáticos más relevantes de la historia del pensamiento científico hasta del siglo XIX. Los Elementos están divididos en XIII Libros y constituyen la recopilación más exhaustiva de las matemáticas conocidas en el año 300 a.c. Su valor universal lo propaga el uso riguroso del método deductivo que distingue entre principios -definiciones, axiomas y postulados-, y teoremas, que se demuestran a partir de los principios. A lo largo de la historia se mantuvo la sospecha de que el quinto postulado era demostrable a partir de los anteriores. El deseo de resolver tal hipótesis ocupa hasta el siglo XIX con la construcción de las geometrías no euclidianas y se deduce con ellas la imposibilidad de demostrar el quinto postulado.
4.- Apolonio de Perga
La obra sobre curvas cónicas de Apolonio de Perga, «un geómetra de la época helenística-, inicialmente dirigido a euclidianos exquisitos, se convirtió en manual para balísticos del Renacimiento como Tartaglia y, poco después, en base inmediata de la dinámica newtoniana».


La ciencia matemática
Ante el retroceso de la escuela clásica de los griegos se presentan periodos de autoridad religiosa. El Renacimiento es el inicio de una nueva revolución que revive la ciencia y las matemáticas. Los representantes más destacados son Descartes, Newton y Leibniz. Este periodo abarca del año 1500dc al 1800 d.c.

  1. René Descartes
Filósofo y matemático francés, 1596-1650, parte de la duda universal como principio y prescinde de cualquier conocimiento previo que no quede demostrado por la evidencia con que ha de manifestarse el espíritu. Descartes duda de toda enseñanza recibida, de todo conocimiento adquirido, del testimonio de los sentidos e incluso de las verdades de orden racional. Llegado a este punto, halla una verdad de la que no puede dudar: la evidencia interior que se manifiesta en su propio sujeto («pienso, luego existo»). Como científico, se debe a Descartes, entre otras aportaciones de considerable importancia, la creación de la geometría analítica a la vez que aporta un corpus cuantitativo al asunto y permite el uso de métodos algebraicos. La geometría exige ser cuantitativa para ser usada en ciencia e ingeniería, y los métodos algebraicos permiten el desarrollo más rápido que los métodos sistemáticos -a su vez más rigurosos- requeridos por el enfoque axiomático de la geometría clásica. Ubi dubium ibi libertas, donde hay duda hay libertad.

  1. Isacc Newton
Isacc Newton , 1642-1727, se le debe el descubrimiento de la gravitación universal, el desarrollo del cálculo infinitesimal e importantes descubrimientos sobre óptica, así como las leyes que rigen la mecánica clásica que alimentaría el nacimiento de la mecánica cuántica. Su obra fundamental, Principios matemáticos de la filosofía natural (1686).

  1. Gottfried W. Leibniz
Filósofo y matemático alemán, 1646-1716; fundó la Academia de Ciencias de Berlín, 1700. En Discurso sobre el arte combinatorio enuncia la necesidad de un lenguaje riguroso, exacto y universal puramente formal. Como matemático, su principal trabajo publicado en 1684 es la memoria Nuevo método para la determinación de los máximos y los mínimos, en la que expone las ideas fundamentales del cálculo infinitesimal, anticipándose unos años a Newton. La notación que empleó es particularmente cómoda y se sigue utilizando con algunas modificaciones; introdujo el símbolo de integral y de diferencial de una variable. En el área de lógica matemática publica Generales inquisitiones de analysi notionum et veritatum y Fundamenta calculi logici .

  1. Georg Wilhelm Friedrich Hegel
Filósofo alemán, 1770-1831; fascinado por la obra de Kant y de Rousseau. Autor de Ciencia de la lógica se le atribuye con este trabajo la constitución de lalógica dialéctica entendida como principio motor del concepto que disuelve y produce las particularidades de lo universal.

  1. Nikolai I. Lobachevsky
Matemático ruso, 1792-1856; funda la Geometría No Euclidiana y renueva por ello los fundamentos que hasta ese momento cimentaban la ciencia de la Geometría. Lobachevsky lleva a cabo su revolución en el planteamiento que hasta entonces había utilizado la ciencia Matemática para resolver el enigma del quinto postulado de Euclides que a su vez sirve de puerta a Lobachevsky para adentrarse en los renovados campos de lo físico y lo real.

Formalización de las Matemáticas
Esta etapa se caracteriza por el resurgimiento de la formalización rigurosa de las matemáticas, que en la etapa clásica griega fue representativa. El uso de los infenitesimales fue una de las prácticas más notoria en la época renacentista, para la cual no se ofrecía una justificación. La rigorización del análisis llegó con la eliminación de los infinitesimales y la presencia de los límites como argumento. En este periodo se crea la lógica simbólica, la escuela formal, la lógica booleana, el cálculo proposicional, la inducción matemática, el cálculo de secuentes,.... Personajes muy notables de esta etapa son: Peano, Hilbert, Frege, Boole, de Morgan, Gentzen, Russell, Gödel y Whitehead. A Rusell y Gödel se deben los planteamientos de las limitantes de la lógica y de la ciencia en general.

  1. Guiseppe Peano
La enunciación de los principios del italiano Guiseppe Peano, 1858-1932, acerca de lógica matemática y su aplicación práctica quedaron contenidos en su obra Formulaire de mathematiques. Los axiomas de Peano permiten definir el conjunto de los números naturales.

  1. David Hilbert
Matemático alemán, 1862-1943, aporta grandes avances a campos fundamentales de la relatividad y la mecánica cuántica con la Teoría de Invariantes y el concepto de Espacio de Hilbert. A partir de las fuentes griegas de Euclides, publica en 1899 su obra Fundamentos de Geometría, en la que formula sus principios de axiomatización de la geometría. Según sus teorías, es necesario establecer un conjunto de postulados básicos antes de plantear de modo más detallado cualquier tipo de problema físico o matemático. Estos principios deben ser simbólicos, sin recurrir a dibujos y representaciones gráficas, y es necesario preveer la mayoría de las posibilidades con antelación. Su concepción reconocía tres sistemas de entes geométricos, puntos, rectas y planos a los que pueden aplicarse axiomas distribuidos en cinco categorías: pertenencia, orden, igualdad o congruencia, paralelismo y continuidad.

  1. Friedrich G. Frege
Junto con Boole y Peano, el matemático y lógico Friedrich G. Frege, 1848-1925, partiendo del análisis de los fundamentos de la matemática lleva a cabo la más profunda renovación y desarrollo de la lógica clásica hasta el momento. Es el primero en introducir los cuantificadores u operadores y en elaborar una Teoría de la Cuantificación.

  1. George Boole
El lógico y matemático George Boole, 1815-1864 aplica el cálculo matemático a la lógica, fundando el álgebra de la lógica. En cierto modo realiza el sueño de Leibniz de una characteristica universalis o cálculo del raciocinio. El empleo de símbolos y reglas operatorias adecuados permite representar conceptos, ideas y razonamientos mediante variables y relaciones (ecuaciones) entre ellas. Boole dio un método general para formalizar la inferencia deductiva, representando complicados raciocinios mediante sencillos sistemas de ecuaciones. Así, la conclusión de un silogismo se encuentra eliminando el término medio de un sistema de tres ecuaciones, conforme a las reglas del álgebra común, La formalización de la lógica, iniciada por Boole, ha contribuido poderosamente a aclarar la estructura de los objetos lógicos, en contraposición a los materiales y aun en contraposición a los matemáticos, pese a las analogías formales entre la matemática y la lógica, que Boole señaló. Su obra principal es Investigación de las leyes del pensamiento en las que se fundan las teorías matemáticas de la lógica y la probabilidad, 1854, que aún hoy se lee con deleite.

  1. Augustus De Morgan
La mayor contribución de Augustus De Morgan (1806-1871) en el estudio de la lógica incluye la formulación de las Leyes de Morgan y su trabajo fundamenta la teoría del desarrollo de las relaciones y la matemática simbólica moderna o lógica matemática. De Morgan es autor de la mayor contribución como reformador de la lógica.

  1. Georg F. Cantor
Al matemático alemán Georg F. Cantor, 1845-1918, se debe la idea delinfinito continuo, es decir, la posibilidad de considerar conjuntos infinitos dados simultáneamente. Se le considera el creador de la teoría de los números irracionales y de los conjuntos.

  1. Gentzen
El alemán Gentzen (1909-1945) formuló la prueba de la consistencia de un sistema de aritmética clásica en el cual el método no elemental es una extensión de inducción matemática a partir de una secuencia de números naturales a un cierto segmento de números ordinales transfinitos.

  1. Bertrand Rusell
Bertrand Rusell (1872-1970) es uno de los creadores de la logística y uno de los pensadores de mayor influencia en la filosofía científica contemporánea. Lo fundamental en su obra es su aportación a la lógica. Antiaristotélico por excelencia llegó a afirmar que para iniciarse en lógica lo básico era no estudiar la lógica de Aristóteles. Conociendo los trabajos de Cantor descubre en lateoría de Conjuntos varias paradojas que resuelve mediante la Teoría de los Tipos. Años más tarde establece una teoría similar, -la de la jerarquía de los lenguajes- para eliminar las paradojas semánticas. Siguiendo además de los trabajos de Cantor, a Peano y Frege, Rusell se propone fundamentar y axiomatizar la matemática a partir de conceptos lógicos. Este empeño culmina con la publicación (1910-1913) de los monumentales Principia Mathematica -en colaboración con Whitehead-, obra que, además, sienta las bases de la moderna lógica formal.

  1. Kurt Gödel
Kurt Gödel (1906-1978) aporta múltiples contribuciones a la lógica matemática, destacando la demostración de la consistencia de la hipótesis cantoriana del continuo y el teorema y prueba de incompletez semántica. En Sobre las proposiciones indecidibles de los sistemas de matemática formal establece que es imposible construir un sistema de cálculo lógico suficientemente rico en el que todos sus teoremas y enunciados sean decidibles dentro del sistema. Con este teorema se demostró definitivamente que era imposible llevar a cabo el programa de la axiomatización completa de la matemática propugnado por Hilbert y otros, ya que, según él, no puede existir una sistematización coherente de la misma tal que todo enunciado matemático verdadero admita demostración. Siempre habrá enunciados que no son demostrables ni refutables. Para probar esta aserción se sirvió de la matematización de la sintaxis lógica.

La Revolución Digital
Esta revolución se inicia con la invención de la computadora digital y el acceso universal a las redes de alta velocidad. Turing relaciona lógica y computación antes que cualquier computadora procese datos. Weiner funda la ciencia de la Cibernética. En las Escuelas modernas de Computación están presentes Lógicos que han permitido avances importantes como Hoare que presenta un sistema axiomático de los sistemas de programación y Dijkstra con un sistema de verificación y deducción de programas a partir de especificaciones.

  1. Alan Turing
Matemático y  Lógico pionero en Teoría de la Computación que contribuye a importantes análisis lógicos de los procesos computacionales. Las especificaciones para la computadora abstracta que él idea -conocida como máquina de Turing-, resulta ser una de sus más importantes contribuciones a la Teoría de la Computación. Turing además prueba que es posible construir una máquina universal con una programación adecuada capaz de hacer el trabajo de cualquier máquina diseñada para resolver problemas específicos. La Máquina de Turing es un intento para determinar si la matemática se puede reducir a algún tipo simple de computación. Su objetivo fué desarrollar la máquina más simple posible capaz de realizar computación. La máquina propuesta por Turing es un dispositivo relativamente simple, pero capaz de realizar cualquier operación matemática. Turing se ilusionó con la idea de que su máquina podía realizar cualquier proceso del cerebro humano, inclusive la capacidad de producir conciencia de uno mismo.

  1. Norbert Weiner
El científico norteaméricano Norbert Weiner (1894-1964) en 1947 publica su libro más famoso: Cibernética, o control y comunicación en el animal y la máquina; en donde se utiliza por primera vez la palabra Cibernética. Existen muchas definiciones de Cibernética -del griego kybernetes, piloto-, y Norbert Weiner da vida a la palabra con una definición simple: La Cibernética es la ciencia que estudia la traducción de procesos biológicos a procesos que reproduce una máquina. Desde los inicios la Cibernética se relaciona directamente con ciencias como Neurología, Biología, Biosociología, Robótica e Inteligencia Artificial.

  1. Luitzen Egbertus Jan Brouwer
Matemático y lógico alemán (1881-1966) conocido como LEJ Brouwer y fundador de la escuela de la Lógica intuicionista contrarrestando definitivamente el formalismo de Hilbert. Miembro del Significs Group son significativos sus trabajos Life, Art and Mysticism (1905) y Sobre la infiabilidad de los principios lógicos.

  1. Alfred Tarski
Matemático y lógico y filósofo polaco (1902-1983). Emérito profesor de la University of California, Berkeley, realiza importantes estudios sobre álgebra en general, teoría de mediciones, lógica matemática, teoría de conjuntos, y metamatemáticas. El trabajo de Tarski  incluye respuestas a la paradoja de Banach-Tarski, el teorema de la indefinibilidad de la verdad, las nociones de cardinal, ordinal, relación y es inductor de las álgebras cilíndricas.

  1. Benoit Mandelbrot
El gran impulsor de la matemática contemporánea y pionero de la geometría fractal6 a quien la computación pura revela la moderna Geometría de la Naturaleza. Fractal y geometría fractal son el corpus principal de sus investigaciones además de los sistemas irreversibles. A la práctica totalidad de disciplinas se aplican hoy sus principios dando por sentado paradigmas como la Teoría del Caos que a finales del siglo XX ya contemplaba el estudio de sistemas dinámicos, irreversibles, caóticos.

La siguiente revolución lógica
La siguiente Revolución Lógica incorpora la fusión entre matemáticas y computación. Las computadoras tienden a explorar datos inteligentemente transfiriendo información de las bases de datos a las bases de conocimiento interconectadas a través de la Red a escala infinitesimal.
La lógica evoluciona pues como un gen hacia la culminación del conocimiento libre que nace del rigor formal de la Matemática griega; emerge renovadamente de etapas de persecución tan oscuras como la Edad Media y otros intentos más recientes; hasta el intercambio constante y continuo de datos en la moderna era de estructura de redes que Internet proporciona a modo neuronal a la Humanidad.
Los principios por los que funciona la lógica clásica funcionan como absolutos, dentro de esta lógica existen unas reglas para definir si una formulación es lógicamente correcta o no. Lo anterior no corresponde exactamente con que una afirmación sea verdadera o no, sino que lo que valora es si esa afirmación ha sido formulada siguiendo correctamente esas reglas lógicas. Es una valoración de su forma más que de su contenido.
El adjetivo "absoluto" en lógica clásica significa que existen unas condiciones para determinar si una premisa -que es el argumento del que pueden derivar otros- es aceptable o no, un argumento en lógica clásica no puede formularse si no las cumple.
No obstante la rigidez es relativa, la lógica presenta cierta flexibilidad siempre y cuando se respeten las reglas formales que la definen.
Hay varios principios tradicionales -no aplicados o rechazados por otras lógicas- que permiten identificar una afirmación como lógicamente correcta o no. Entre otros, el principio de identidad, el principio de tercero excluido, el principio de no contradicción, el principio de explosión y la monotonicidad de la implicación.
La formulación es funcional, de eso no cabe duda, igualmente es racional cognitiva, pero la cuestión es si se trata de algo inamovible como enunciado. En realidad no, porque, como se ha indicado, las llamadas leyes de la lógica son los patrones de funcionamiento de la lógica clásica o tradicional, en otros tipos de lógica ese funcionamiento puede ser distinto. 

Biografía de Aristóteles (384-322 a.C.)


Filósofo y científico griego, considerado, junto a Platón y Sócrates, como uno de los pensadores más destacados de la antigua filosofía griega y posiblemente el más influyente en el conjunto de toda la filosofía occidental.
Nació en Estagira (actual ciudad griega de Stavro, entonces perteneciente a Macedonia), razón por la cual también fue conocido posteriormente por el apelativo de El Estagirita. Hijo de un médico de la corte real, se trasladó a Atenas a los 17 años de edad para estudiar en la Academia de Platón. Permaneció en esta ciudad durante aproximadamente 20 años, primero como estudiante y, más tarde, como maestro. Tras morir Platón (c. 347 a.C.), Aristóteles se trasladó a Assos, ciudad de Asia Menor en la que gobernaba su amigo Hermias de Atarnea. Allí contrajo matrimonio con una pariente de éste (posiblemente su sobrina o su hija), llamada Pitias, y actuó como su consejero. Tras ser capturado y ejecutado Hermias por los persas (345 a.C.), Aristóteles se trasladó a Pela, antigua capital de Macedonia, donde se convirtió en tutor de Alejandro (más tarde Alejandro III el Magno), hijo menor del rey Filipo II. En el año 336 a.C., al acceder Alejandro al trono, regresó a Atenas y estableció su propia escuela: el Liceo. Debido a que gran parte de las discusiones y debates se desarrollaban mientras maestros y estudiantes caminaban por su paseo cubierto, sus alumnos recibieron el nombre de peripatéticos. La muerte de Alejandro (323 a.C.) Generó en Atenas un fuerte sentimiento contra los macedonios, por lo que Aristóteles se retiró a una propiedad familiar situada en Calcis, en la isla de Eubea, donde falleció un año más tarde.
En lógica, Aristóteles desarrolló reglas para establecer un razonamiento encadenado que, si se respetaban, no producirían nunca falsas conclusiones si la reflexión partía de premisas verdaderas (reglas de validez). En el razonamiento los nexos básicos eran los silogismos: proposiciones emparejadas que, en su conjunto, proporcionaban una nueva conclusión. En el ejemplo más famoso, "Todos los humanos son mortales" y "Todos los griegos son humanos", se llega a la conclusión válida de que "Todos los griegos son mortales". La ciencia es el resultado de construir sistemas de razonamiento más complejos. En su lógica, Aristóteles distinguía entre la dialéctica y la analítica; para él, la dialéctica sólo comprueba las opiniones por su consistencia lógica. La analítica, por su parte, trabaja de forma deductiva a partir de principios que descansan sobre la experiencia y una observación precisa. Esto supone una ruptura deliberada con la Academia de Platón, escuela donde la dialéctica era el único método lógico válido, y tan eficaz para aplicarse en la ciencia como en la filosofía.



El Principio Lógico de Identidad
Afirma que: toda cosa es lo que es.
Tomemos en consideración los siguientes ejemplos el círculo es redondo; el hombre es un animal racional. Tanto en el primero como en el segundo ejemplo, el predicado está implícito en el sujeto. En efecto, es inconcebible un círculo que no fuere redondo, y que el hombre no fuese un animal racional.
Estas dos proposiciones presentan una identidad entre el sujeto y el predicado. Círculo es lo mismo que redondo, y el hombre es lo mismo que un animal racional.
En este sentido, podríamos reducir a la formula A es A.
Esta identidad lógica indica al mismo tiempo que el círculo implica el ser redondo, y el hombre implica ser animal racional, lo cual expresado en fórmula sería A implica A. De esto se sigue que: De lo verdadero se deriva siempre lo verdadero, nunca lo falso.

El Principio Lógico de Contradicción
El principio de la contradicción afirma que: es imposible que algo sea al mismo tiempo verdadero y falso. Consideremos los siguientes ejemplos: el círculo no es redondo; el hombre no es un animal racional. Ambas proposiciones son falsas porque son ambas contradictorias. En efecto, es falso que el círculo no sea redondo y que el hombre no sea un animal racional. Si es un círculo es imposible que no sea redondo, y si es un hombre es imposible que no sea animal racional.
Como es inadmisible que sea algo y no sea al mismo tiempo y en el mismo sentido, amabas proposiciones son contradictorias. La contradicción puede aparecer también entre dos proposiciones contradictorias entre sí. Por ejemplo: El triángulo tiene tres lados. Ahora si es verdadero que el triángulo tiene tres lados, es automáticamente falsa la otra que afirma que no tiene tres lados. Luego, dos proposiciones contradictorias entre sí contribuyen a una contradicción.
La contradicción expresada en fórmula sería: tanto si una proposición predica que algo es y no es como si dos proposiciones son contradictorias entre sí, hay una contradicción.

El Principio Lógico del Tercer Excluido
Dice que: dos proposiciones contradictorias no pueden ser ambas falsas, ni ambas verdaderas. Necesariamente una de ellas debe ser verdadera. Consideremos el siguiente ejemplo: el sol es una estrella. Por el principio de contradicción no podemos considerar ambas como verdaderas, y por el principio del tercer excluido no podemos aceptar que ambas son falsas. Luego, se sigue que si una es verdadera la otra es falsa y viceversa. Su expresión formal sería: A, o es A o no es A.
De esto se sigue que: entre dos proposiciones contradictorias, si la primera es verdadera, la segunda será falsa, y si la segunda es verdadera la primera será falsa.
Principio de la Razón Suficiente
El principio lógico de la razón suficiente no fue enunciado por Aristóteles sino posteriormente por el filósofo y científico alemán Guillermo Leibniz (1.646-1.716), y se refiere a que para nuestro pensamiento sólo son verdaderos aquellos conocimientos que podemos probar con un número suficiente de razones, para que lleven al convencimiento de la verdad de lo afirmado. Esto quiere decir que, "Todo objeto debe tener una razón suficiente que lo explique". O lo que es, es por alguna razón.
Este principio por referirse al problema de la verdad lo encontraremos tanto en el campo de la gnoseología como en el de la lógica, ya que el estudio de la verdad compete a la Gnoseología.
Dejemos claro que existe un gran número de conocimientos cuya verdad adquirimos a través de nuestros sentidos, mientras que existen otros que deben ser admitidos como el caso de los axiomas de las matemáticas.

Arturo Schopenhauer (1.788-1860) en su obra "De la cuádruple raíz del principio de la razón suficiente", hace una distinción entre este principio y el de la causa y dice que la causa no puede reducirse a una simple razón, porque es por sí misma un hecho y distingue cuatro fuentes para el principio de razón suficientes que son:
  • El principio de la razón suficiente aplicado al cambio, al devenir, es el principio de causa, que se enuncia así: todo devenir tiene su causa.
  • El principio de razón suficiente aplicado al conocer, establece que todo juicio que expresa un conocimiento debe tener su fundamento y justificación en otros juicios, ello se enuncia: Toda afirmación exige una justificación.
  • El principio de razón suficiente aplicado al ser independiente de todo tiempo; es decir, que todas las partes de un todo deben estar relacionadas entre sí y cada una de ellas se encuentran determinada y condicionada por sus partes constitutivas. Esto se enuncia: Todo ser tiene su razón.
  • El principio de razón suficiente aplicado al obrar, es la afirmación y se enuncia de la manera siguiente: Toda acción tiene su motivación.

La razón suficiente la razón suficiente no es otra cosa que la conformidad del juicio con la legalidad de la misma razón. Guillermo Leibniz formuló este principio de la forma siguiente:

"Todas las cosas deben tener una razón suficiente por la cual son los que son y no otra cosa", lo que quiere decir que para nuestro pensamiento sólo podrán ser inobjetables y verdaderos aquellos conocimientos que se puedan probar suficientemente".

Relación de la Lógica con otras Ciencias
Muy relacionada con la lógica se encuentra la semántica o filosofía del lenguaje, la epistemología, la psicología, la computación, las ciencias físicas y naturales, en las ciencias sociales y en la vida cotidiana para resolver infinidades de problemas.

CONCLUSIÓN




Después de leer este ensayo es inevitable seguir enfrascados en lo importante que es el silogismo será inevitable si alguien no se pone las pilas esas que duran y duran...ya que supone hablar de lo necesario e incondicionado. Y precisamente incondicionado por estar basado en el “ser de las cosas”. Este solo manifiesta la verdad, porque el entendimiento humano es capaz de llegar a la intuición directa e lo real aunque sea a través de un proceso de abstracción. En primer lugar, el uso de los símbolos; pues, aunque la lógica tradicional empleó algunos símbolos, cuantos se necesitaban para el ordinario desenvolvimiento de la Lógica, al proponer y desarrollar una operación intelectual totalmente simbólica, hace su estudio mucho más fácil, y únicamente posible, sobre todo para combinaciones muy enmarañadas. Agréguese a esto que a causa de la eficacia de los tecnicismos, considera las cosas con una mayor abstracción de los elementos afectivos en los que abundan todas las palabras.   Después se ha de tener muy en cuenta que la construcción lógica de la misma lógica, la hace a ésta más científicamente, orgánicamente y bellamente ordenada, aunque esto, más bien pertenece a la forma de presentarla que a la esencia o al método mismo.

Por último, el que exactamente procede por demostraciones de las cosas indefinibles y de las reglas evidentes, a lo más complicado y deducido, de una manera un tanto ciega y mecánica, y el que haya encontrado nuevas formas de verdad recta, debe tomarse en consideración; con tal que se le conceda en la lógica siempre la primacía a la razón, que conoce y juzga evidentemente, lo cual se necesita para hallar y justificar las normas del recto pensar, y debemos fijarnos sobre todo en aquellas que son útiles para cultivar las ciencias, a fin de no emplear inútilmente el esfuerzo mental, lo que es más importante, más acomodado al gusto de los hombres de hoy, aunque tal vez menos humano.

2 comentarios:

  1. necesito realizar un problema de silogismo razonamiento y falacia y en realidad no se como si alguien puede ayudarme jesusalberto162009@gmail.com

    ResponderEliminar
  2. necesito realizar un problema de silogismo razonamiento y falacia y en realidad no se como si alguien puede ayudarme jesusalberto162009@gmail.com

    ResponderEliminar