miércoles, 15 de enero de 2014

PORTADA

S.E.M.S.                         D.G.E.T.A                               S.E.P.

CENTRO DE BACHILLERATO TECNOLÓGICO
AGROPECUARIO Nº  113
“Miguel Hidalgo y Costilla”
PARANGARICO, YURIRIA, GUANAJUATO.


S.A.E.T.A. 
Sistema Abierto de Educación Tecnológica Agropecuaria

LÓGICA I

1º AS Técnico Básico

Ensayo académico sobre: 

LA LÓGICA Y SUS PRINCIPIOS SUPREMOS



TRABAJO REALIZADO POR:

CANDELARIA RODRÍGUEZ CONTRERAS.



ASESOR: LIC. JOSÉ JESÚS LEÓN LEÓN





PARANGARICO, YURIRIA, GTO., 15 DE ENERO DE 2014

INTRODUCCIÓN GENERAL

LA LOGICA Y SUS PRINCIPIOS SUPREMOS
  1. LA LÓGICA


2. EL RAZONAMIENTO


3. SILOGISMO

                                      

4. LAS FALACIAS 
                                      

5. CONOCIMIENTO Y SOCIEDAD    


6. EL CONOCIMIENTO MODERNO
   
                                    

7. FILOSOFÍA DE LA MENTE

                                  

8. EL LENGUAJE

                                 

9. TECNOLOGÍA Y CIENCIA

                                

La Lógica es  la ciencia que de manera estructurada organiza nuestros razonamientos. Estudia la forma y el contenido de los pensamientos. Tiene objeto, método propio y tiene por objeto determinar pensamientos verdaderos y desechar los falsos.

Es la forma de organización del pensamiento de acuerdo con un principio, para conseguir una determinada racionalidad. En sí se puede decir que La lógica estudia la forma de nuestros pensamientos y crea los conceptos, juicios, y raciocinios, solamente desde el punto de vista de su estructura, es decir, desde el punto de vista de su forma lógica. Descubre leyes y reglas de la forma de nuestros pensamientos, en la perspectiva de la verdad. Así la verdad se convierte en el horizonte de la lógica, haciendo su campo de estudio las especies o  de pensamientos

Según definiciones de ARISTÓTELES "La lógica es la ciencia de la demostración, porque se preocupa de dar reglas para alcanzar la verdad de evidencia inmediata, que conocemos por medio de la demostración"

Lo que ahora se conoce como lógica clásica o tradicional fue por primera vez enunciada por él precisamente, fué quien elaboró las leyes para un correcto razonamiento silogístico. Un silogismo es una proposición hecha de una de estas cuatro afirmaciones posibles: "Todo A es B" (universal afirmativo), "Nada de A es B" (universal negativo), "Algo de A es B" (particular afirmativo), o "Algo de A no es B" (particular negativo. Llamadas términos del silogismo. Un silogismo bien formulado consta de dos premisas y una conclusión, debiendo tener cada premisa un término en común con la conclusión y un segundo término relacionado con la otra premisa.

Existen dos grandes ramas sobre la Lógica; en formal y trascendental, según prescinda o no de las presentaciones objetivas. La formal la subdividió en lógica pura y lógica aplicada, la primera solo atiende los principios a priori, despreciando todo lo que tenga su origen en la experiencia; la segunda aplicada a su entendimiento sujeto a la experiencia, a las leyes de la razón pura. Así lo verdadero o falso, no está en la adecuación o no de las ideas y los objetos de la realidad, sino en la concordancia de las representaciones entre si, por lo tanto su lógica es eminente mente formalista.

La lógica es la ciencia de la idea pura, esto es, de la idea en el pensamiento abstracto del pensamiento. De las corrientes del idealismo panteísta, hace severas críticas al formalismo kantiano y es contrario al intento a proclamar las leyes de la lógica formal como método universal del conocimientoLa lógica es el estudio de las reglas que permiten al espíritu alcanzar la verdad. En efecto los teoremas y las leyes científicas han sido demostrados y comprobados por métodos rigurosos, cuyo empleo explica el desenvolvimiento prodigioso de las ciencias desde el siglo XVI. Importa pues, conocer esos métodos, buscar como las operaciones de la inteligencia deben realizarse para llegar a conocimientos verdaderos.

Durante mucho tiempo se creyó que la inteligencia, observando sus propias actividades, sus propias exigencias, era capaz de determinar , por si misma , las reglas que las ciencias debían seguir. De ahí una concepción tradición que se remonta a Aristóteles.

Por lo que hemos visto, podríamos decir que la lógica es la disciplina filosófica que tiene un carácter formal. La ciencia de las leyes y de las formas del pensamiento, que nos da normas para la investigación científica y nos suministra un criterio de verdad. 

En los siguientes ensayos, me he dedicado a la tarea de investigar cuáles son estas leyes o principios que la conforman, en qué consisten y cuales son los beneficios y desventajas  para nosotros como humanos pensantes; así como entender y evaluar los argumentos con sus ámbitos naturales.  De hecho, la historia de la lógica registra una serie de opiniones sobre lo que es en sí esta ciencia y sus temas y problemáticas. 

Pues bien, les presento mi ensayo espero que les llegue a entusiasmar tanto como a mi conocer mucho más de lo que nos forma con seres humanos.

LA LÓGICA


INTRODUCCIÓN


La lógica nace en el seno de la filosofía pero tal como ocurrió con otras disciplinas su ámbito de estudio y de conocimiento dejó de ser parte exclusiva de la filosofía, para integrarse al campo general de la ciencia. Sin embargo, hoy por hoy el discurso argumentativo es el vehículo de expresión básico en el quehacer filosófico, por lo tanto se puede decir que la lógica es una de las pocas herramientas de análisis y crítica de que dispone el filósofo. Varias discusiones filosóficas presuponen el uso de principios lógicos básicos y el uso del análisis lógico puede ayudar a esclarecer los planteamientos de varios problemas filosóficos, de ahí la importancia de estudiar lógica en el campo de la filosofía.

La lógica pretende pues, proporcionar los conocimientos teóricos primordiales en el campo de la lógica, que le permitan el desarrollo de habilidades y actitudes básicas para el aprecio y buen uso de la lógica en el terreno filosófico, también habla acerca del conocimiento y la forma de los pensamientos; expresa que la materia es el contenido, el objeto acerca del cual se piensa. La forma, en cambio, es el modo por el cual el pensamiento se convierte en propiedad de nuestro intelecto. Por esta razón, algunos filósofos han definido la lógica como " la ciencia que estudia los principios formales del conocimiento, es decir, aquellas condiciones que deben cumplirse para que un conocimiento, cualquiera que sea su contenido, pueda considerarse como verdadero y bien fundado, y no como una mera ocurrencia o como una hipótesis sin base ninguna".
Teniendo en cuenta que el pensar es un proceso que ocurre en el tiempo dentro de un sujeto pensante y que el pensamiento, como tal, puede existir formulado y que en este caso es intemporal, puesto que no esta en el tiempo, podemos hallar una diferencia fundamental entre la psicología y la lógica; "a la primera, corresponde el estudio del sujeto pensante y de los procesos psicológicos reales que ocurren en él, entre los cuales esta también el proceso de pensar. En cambio, la lógica no debe ocuparse de los procesos psíquicos del pensar, sino del pensamiento elaborado y formulado.
Debe estudiar los pensamientos mismos analizarlos en sus formas, en su estructura, en sus enlaces y demás caracteres que pueden tener, prescindiendo en absoluto del sujeto que pudo haberlos elaborado. Desarrollar conocimientos sobre la abstracción del conocimiento lógico y sus alternativas de desarrollo para el pensamiento, por medio de un proceso de elaboración de campos de diferenciación y análisis, lo que permite resolver problemáticas de diversos tipos de acuerdo a planteamientos lógicos específicos lo que le ayuda a reconocer la diversidad de pensamientos.

A través de nuestro trabajo conoceremos mucho más de este tema que es demasiado extenso pero que tratamos de resumir, y tomar los detalles más interesantes.

DESARROLLO

 LA LÓGICA






LA LÓGICA COMO PROCESO RAZONABLE
La lógica es una ciencia formal que estudia los principios de la demostración e inferencia válida. La palabra se deriva del griego que significa «dotado de razón, intelectual, dialéctico, argumentativo», que a su vez viene de λόγος (logos), «palabrapensamientoideaargumentorazón o principio».
Así como el objeto de estudio tradicional de la química es la materia, y el de la biología la vida, el de la lógica es la inferencia. La inferencia es el proceso por el cual se derivan conclusiones a partir de premisas. La lógica investiga los principios por los cuales algunas inferencias son aceptables, y otras no. Cuando una inferencia es aceptable, lo es por su estructura lógica, y no por el contenido específico del argumento o el lenguaje utilizado. Por esta razón la lógica se considera una ciencia formal, como la matemática, en vez de una ciencia empírica.
La lógica tradicionalmente se consideró una rama de la filosofía. Pero desde finales del siglo XIX, su formalización simbólica ha demostrado una íntima relación con las matemáticas, y dio lugar a la lógica matemática. En el siglo XX la lógica ha pasado a ser principalmente la lógica simbólica, un cálculo definido por símbolos y reglas de inferencia, lo que ha permitido su aplicación a la informática. Hasta el siglo XIX, la lógica aristotélica y estoica mantuvo siempre una relación con los argumentos formulados en lenguaje natural. Por eso aunque eran formales, no eran formalistas. Hoy esa relación se trata bajo un punto de vista completamente diferente. La formalización estricta ha mostrado las limitaciones de la lógica tradicional o aristotélica, que hoy se interpreta como una parte pequeña de la lógica de clases.

HISTORIA


Históricamente la palabra «lógica» ha ido cambiando de sentido. Comenzó siendo una modelización de los razonamientos, propuesta por los filósofos griegos, y posteriormente ha evolucionado hacia diversos sistemas formales. En un principio la lógica no tuvo el sentido de estructura formal estricta.

Edad Antigua

La lógica, como un análisis explícito de los métodos de razonamiento, se desarrolló originalmente en tres civilizaciones de la historia antigua: China, India y Grecia, entre el siglo V y el siglo I a. C. En China no duró mucho tiempo: la traducción y la investigación escolar en lógica fue reprimida por la dinastía Qin, acorde con la filosofía legista. En India, la lógica duró bastante más: se desarrolló (por ejemplo con la nyāya) hasta que en el mundo islámico apareció la escuela de Asharite, la cual suprimió parte del trabajo original en lógica. A pesar de lo anterior, hubo innovaciones escolásticas indias hasta principios del siglo XIX, pero no sobrevivió mucho dentro de la India colonial. El tratamiento sofisticado y formal de la lógica moderna aparentemente proviene de la tradición griega.
Se considera a Aristóteles el fundador de la lógica como propedéutica o herramienta básica para todas las ciencias. Aristóteles fue el primero en formalizar los razonamientos, utilizando letras para representar términos. También fue el primero en emplear el término «lógica» para referirse al estudio de los argumentos dentro del «lenguaje apofántico» como manifestador de la verdad en la ciencia. Sostuvo que la verdad se manifiesta en el juicio verdadero y el argumento válido en el silogismo: «Silogismo es un argumento en el cual, establecidas ciertas cosas, resulta necesariamente de ellas, por ser lo que son, otra cosa diferente». Se refirió en varios escritos de su Órganon a cuestiones tales como concepto, la proposición, definición, prueba y falacia. En su principal obra lógica, los Primeros analíticos, desarrolló el silogismo, un sistema lógico de estructura rígida. Aristóteles también formalizó el cuadro de oposición de los juicios y categorizó las formas válidas del silogismo. Además, Aristóteles reconoció y estudió los argumentos inductivos, base de lo que constituye la ciencia experimental, cuya lógica está estrechamente ligada al método científico. La influencia de los logros de Aristóteles fue tan grande, que en el siglo XVIII, Immanuel Kant llegó a decir que Aristóteles había prácticamente completado la ciencia de la lógica.
Los filósofos estoicos introdujeron el silogismo hipotético y anunciaron la lógica proposicional, pero no tuvo mucho desarrollo.
Por otro lado, la lógica informal fue cultivada por la retórica, la oratoria y la filosofía, entre otras ramas del conocimiento. Estos estudios se centraron principalmente en la identificación de falacias y paradojas, así como en la construcción correcta de los discursos.
En el periodo romano la lógica tuvo poco desarrollo, más bien se hicieron sumarios y comentarios a las obras recibidas, siendo los más notables: Cicerón, Porfirio y Boecio. En el período bizantino, Filopón.

Edad Media




Con el nombre de Dialéctica en la Edad Media la Lógica mantiene la condición de ciencia propedéutica. Así se estudia en la estructura de las enseñanzas del Trivium como una de las artes liberales pero sin especiales aportaciones en la Alta Edad Media. En su evolución hacia la Baja Edad Media son importantes las aportaciones árabes de Al-Farabí; Avicena y Averroes, pues fueron los árabes quienes reintrodujeron los escritos de Aristóteles en Europa.
La evolución crítica que se va desarrollando a partir de las aportaciones de Abelardo dinamizaron la problemática lógica y epistemológica a partir del siglo XIII (Pedro Hispano; Raimundo Lulio Lambert de Auxerre Guillermo de Sherwood) que culminaron en toda la problemática del siglo XIV: Guillermo de Ockham; Jean Buridan; Alberto de Sajonia.
Aquí están tratados una cantidad de nuevos problemas en la frontera de la lógica y la semántica que no fueron tratados por los pensadores antiguos. De especial relevancia es la problemática respecto a la valoración de los términos del lenguaje en relación con los conceptos universales, así como el estatuto epistemológico y ontológico de éstos y el problema de la individuación.

Edad Moderna



Un nuevo enfoque adquiere esta lógica en las interpretaciones racionalistas de Port Royal, en el siglo XVII, (Antoine Arnauld; Pierre Nicole) pero tampoco supusieron un cambio radical en el concepto de la Lógica como ciencia.
Los filósofos racionalistas, sin embargo, aportaron a través del desarrollo del análisis y su desarrollo en las matemáticas (Descartes, Pascal y Leibniz) los temas que van a marcar el desarrollo posterior. Son de especial importancia la idea de Descartes de una Mathesis universalis y de Leibniz en la búsqueda de un lenguaje universal, especificado con precisión matemática sobre la base de que la sintaxis de las palabras debería estar en correspondencia con las entidades designadas como individuos o elementos metafísicos, lo que haría posible un cálculo o computación mediante algoritmo en el descubrimiento de la verdad.
Aparecen los primeros intentos y realizaciones de máquinas de cálculo, (Pascal, Leibniz) y, aunque su desarrollo no fue eficaz, sin embargo la idea de una Mathesis Universal o «Característica Universal», es el antecedente inmediato del desarrollo de la lógica a partir del siglo XX. Kant consideraba que la lógica por ser una ciencia a priori había encontrado su pleno desarrollo prácticamente con la lógica aristotélica, por lo que apenas había sido modificada desde entonces. Pero hace un uso nuevo de la palabra «lógica» como lógica trascendental, en el sentido de investigar los conceptos puros del entendimiento o categorías trascendentales.
Hegel considera la lógica dentro del Absoluto como un proceso dialéctico del Espíritu Absoluto que produce sus determinaciones como concepto y su realidad como resultado en el devenir de la Idea del Absoluto como Sujeto, cuya verdad se manifiesta en el resultado del movimiento mediante la contradicción en tres momentos sucesivos, tesis-antítesis-síntesis. La epistemología y la ontología van unidas y expuestas en la Filosofía entendida ésta como Sistema Absoluto.

Siglo XIX



A partir de la segunda mitad del siglo XIX, la lógica sería revolucionada profundamente. En 1847, George Boole publicó un breve tratado titulado El análisis matemático de la lógica, y en 1854 otro más importante titulado Las leyes del pensamiento. La idea de Boole fue construir a la lógica como un cálculo en el que los valores de verdad se representan mediante el 0 (falsedad) y el 1 (verdad), y a los que se les aplican operaciones matemáticas como la suma y la multiplicación.

Al mismo tiempo, Augustus De Morgan publica en 1847 su obra Lógica formal, donde introduce las leyes de De Morgan e intenta generalizar la noción de silogismo. Otro importante contribuyente inglés fue John Venn, quien en 1881 publicó su libro Lógica Simbólica, donde introdujo los famosos diagramas de Venn. Charles Sanders Peirce y Ernst Schröder,  también hicieron importantes contribuciones.
Sin embargo, la verdadera revolución de la lógica vino de la mano de Gottlob Frege, quien frecuentemente es considerado como el lógico más importante de la historia, junto con Aristóteles. En su trabajo de 1879, la Conceptografía, Frege ofrece por primera vez un sistema completo de lógica de predicados. También desarrolla la idea de un lenguaje formal y define la noción de prueba. Estas ideas constituyeron una base teórica fundamental para el desarrollo de las computadoras y las ciencias de la computación, entre otras cosas. Pese a esto, los contemporáneos de Frege pasaron por alto sus contribuciones, probablemente a causa de la complicada notación que desarrolló el autor. En 1893 y 1903, Frege publica en dos volúmenes Las leyes de la aritmética, donde intenta deducir toda la matemática a partir de la lógica, en lo que se conoce como el proyecto logicista. Su sistema, sin embargo, contenía una contradicción (la paradoja de Russell).

 

Siglo XX

El siglo XX sería uno de enormes desarrollos en lógica. A partir del siglo XX, la lógica pasó a estudiarse por su interés intrínseco, y no sólo por sus virtudes como propedéutica, por lo que estudió a niveles mucho más abstractos.
En 1910, Bertrand Russell y Alfred North Whitehead publican Principia mathematica, un trabajo monumental en el que logran gran parte de la matemática a partir de la lógica, evitando caer en las paradojas en las que cayó Frege. Los autores reconocen el mérito de Frege en el prefacio. Principia mathematica utiliza una notación inspirada en la de Giuseppe Peano, parte de la cual todavía es muy utilizada hoy en día.
Si bien a la luz de los sistemas contemporáneos la lógica aristotélica puede parecer equivocada e incompleta, Jan Łukasiewicz mostró que, a pesar de sus grandes dificultades, la lógica aristotélica era consistente, si bien había que interpretarse como lógica de clases, lo cual no es pequeña modificación. Por ello la silogística prácticamente no tiene uso actualmente.
Además de la lógica proposicional y la lógica de predicados, el siglo XX vio el desarrollo de muchos otros sistemas lógicos; entre los que destacan las muchas lógicas modales.

La lógica y sus principios supremos


Por lo que hemos visto, podríamos decir que la lógica es la disciplina filosófica que tiene un carácter formal, ya que estudia la estructura o formas de pensamiento (tales como conceptos, proposiciones, razonamientos) con el objeto de establecer razonamientos o argumentos válidos o correctamente lógicos.
Además de estudiar las estructuras que conforman el pensamiento, a la lógica le interesa descubrir las leyes y los principios que permiten conducirnos con rigor, precisión y verdad hacia el conocimiento.
Una definición que nos puede ayudar a resumir los principales objetivos de la lógica es la que nos proporciona Gregorio Fingermann; para este autor la lógica es: "La ciencia de las leyes y de las formas del pensamiento, que nos da normas para la investigación científica y nos suministra un criterio de verdad". 
En las siguientes páginas, nos dedicamos a la tarea de investigar cuáles son estas leyes o principios que norman nuestro pensamiento, en qué consisten estas formas o estructuras del pensamiento mismo, así como la naturaleza de estos criterios que nos orientan hacia la verdad; un tipo de verdad formal que es la que le interesa estudiar a la lógica.
Ahora bien, esta definición, como otras muchas que encontramos en los textos, nos hace pensar que la lógica solamente incide en un pensamiento o en un conocimiento especializado, como el científico o el filosófico; sin embargo, esto no es así, pues además de que la lógica es un "instrumento" para la ciencia, lo es también para nuestra vida diaria, pues el ejercicio de razonar y de reflexionar no se reduce al ámbito científico, ya que es algo que a menudo llevamos a cabo a lo largo de pláticas, discusiones y decisiones que la vida misma nos plantea. Por ello, en la actualidad se habla, incluso, de una lógica informal que, a juicio del filósofo mexicano Alejandro Herrera, se propone examinar la estructura de los razonamientos sobre cuestiones de la vida diaria y tiene una doble vertiente analítica y evaluativa. Intenta superar el aspecto mecánico del estudio de la lógica, así como entender y evaluar los argumentos con sus ámbitos naturales, por ejemplo, el jurídico, el estético y el ético.

Es preciso observar que la que te hemos proporcionado no es la única definición de lógica. De hecho, la historia de la lógica registra una serie de opiniones sobre lo que es en sí esta ciencia y sus temas y problemáticas. A manera de ejemplo, recordemos las siguientes:
v  "La lógica es la ciencia de la demostración, pues sólo se preocupa de formular reglas para alcanzar verdades a través de la demostración" (Aristóteles). 
v  "La lógica o arte de razonar es la parte de la ciencia que enseña el método para alcanzar la verdad" (San Agustín).
v  "La lógica es la ciencia de las leyes necesarias del entendimiento y de la razón"(Kant). 
v  "La lógica es la ciencia de la idea pura de la idea en el elemento abstracto del pensamiento" (Hegel). 
v  "La lógica es la ciencia de las aspiraciones intelectuales que sirven para estimación de la prueba" (J. S. Mill).

Según las diferentes maneras de concebir o entender la lógica, ésta se ha venido caracterizando como:
  • Una disciplina teóricaEn cuanto que es considerada como una ciencia o un conocimiento "que investiga, desarrolla y establece los principios fundamentales proveyendo los métodos necesarios para distinguir el razonamiento correcto del incorrecto. A través de todos estos procesos, la lógica pretende encontrar la verdad".
  • Una disciplina práctica o normativa. En la medida en que entraña una técnica, un arte o una destreza que nos permite interpretar el razonamiento correcto y a la vez criticar el razonamiento incorrecto, de la manera como lo hizo Aristóteles en sus refutaciones sofísticas.
Así, muchas veces se dice que la utilidad de la lógica estriba en que nos enseña a pensar correctamente y que, por ello, más que una ciencia es un verdadero arte o entrenamiento de nuestras facultades cognoscitivas. Muchas veces se dice que la lógica es una "gimnasia" mental que nos entrena a usar correctamente nuestro intelecto.

Ciencia argumentativa y propedéutica

El término «lógica», se encuentra en los antiguos peripatéticos y estoicos como una teoría de la argumentación o argumento cerrado. De este modo la forma argumentativa responde al principio de conocimiento que supone que representa adecuadamente la realidad. Por ello, sin perder su condición de formalidad, no son formalistas y no acaban de desprenderse de las estructuras propias del lenguaje.
Con el nombre de Dialéctica, en la Edad Media, la Lógica mantiene la condición de ciencia propedéutica. Así se estudia en la estructura de las enseñanzas del Trivium como una de las artes liberales. En la Edad Moderna la lógica tradicional aristotélica adquiere un nuevo enfoque en las interpretaciones racionalistas de Port Royal, en el siglo XVII, pero tampoco supusieron un cambio radical en el concepto de la Lógica como ciencia.
Los filósofos racionalistas, sin embargo, al situar el origen de la reflexión filosófica en la conciencia, aportaron, a través del desarrollo del análisis como método científico del pensar, los temas que van a marcar el desarrollo de la lógica formal. Son de especial importancia la idea de Descartes de una Mathesis universalis y de Leibniz que, con su Characteristica Universalis supone la posibilidad de un lenguaje universal, especificado con precisión matemática sobre la base de que la sintaxis de las palabras debería estar en correspondencia con las entidades designadas como individuos o elementos metafísicos, lo que haría posible un cálculo o computación mediante algoritmo en el descubrimiento de la verdad.

Ciencia formal

En el último tercio del siglo XIX la Lógica va a encontrar su transformación más profunda de la mano de las investigaciones matemáticas y lógicas, junto con el desarrollo de la investigación de las estructuras profundas del lenguaje, la lingüística, convirtiéndose definitivamente en una ciencia formal.

Lógica informal

En el lenguaje cotidiano, expresiones como «lógica» o «pensamiento lógico», aporta también un sentido alrededor de un «pensamiento lateral» comparado, haciendo los contenidos de la afirmación coherentes con un contexto, bien sea del discurso o de una teoría de la ciencia, o simplemente con las creencias o evidencias transmitidas por la tradición cultural.
Del mismo modo existe el concepto sociológico y cultural de lógica como, p.e. «la lógica de las mujeres», «lógica deportiva», etc. Que, en general, podríamos considerar como «lógica cotidiana» - también conocida como «lógica del sentido común».

SISTEMAS LOGICOS
A.   Sistema formal


Existe un debate sobre si es correcto hablar de una lógica, o de varias lógicas, pero en el siglo XX se han desarrollado no uno, sino varios sistemas lógicos diferentes, que capturan y formalizan distintas partes del lenguaje natural. Se podría definir a un sistema lógico como un conjunto de cosas, que nos ayudan en la toma de decisiones que sean lo más convenientemente posible.
Un sistema lógico está compuesto por:
1.   Un conjunto de símbolos primitivos (el alfabeto, o vocabulario).
2.   Un conjunto de reglas de formación (la gramática) que nos dice cómo construir fórmulas bien formadas a partir de los símbolos primitivos.
3.   Un conjunto de axiomas o esquemas de axiomas. Cada axioma debe ser una fórmula bien formada.
4.   Un conjunto de reglas de inferencia. Estas reglas determinan qué fórmulas pueden inferirse de qué fórmulas. Por ejemplo, una regla de inferencia clásica es el modus ponens, según el cual, dada una fórmula A, y otra fórmula A → B, la regla nos permite afirmar que B.
Estos cuatro elementos completan la parte sintáctica de los sistemas lógicos. Sin embargo, todavía no se ha dado ningún significado a los símbolos discutidos, y de hecho, un sistema lógico puede definirse sin tener que hacerlo. Tal tarea corresponde al campo llamado semántica formal, que se ocupa de introducir un quinto elemento:
5.   Una interpretación formal. En los lenguajes naturales, una misma palabra puede significar diversas cosas dependiendo de la interpretación que se le dé. Por ejemplo, en el idioma español, la palabra «banco» puede significar un edificio o un asiento, mientras que en otros idiomas puede significar algo completamente distinto o nada en absoluto. En consecuencia, dependiendo de la interpretación, variará también el valor de verdad de la oración «el banco está cerca». Las interpretaciones formales asignan significados inequívocos a los símbolos, y valores de verdad a las fórmulas.

B.   Lógicas clásicas

Los sistemas lógicos clásicos son los más estudiados y utilizados de todos, y se caracterizan por incorporar ciertos principios tradicionales que otras lógicas rechazan. Algunos de estos principios son: el principio del tercero excluido, el principio de no contradicción, el principio de explosión y la monoticidad de la implicación. Entre los sistemas lógicos clásicos se encuentran:

 

C.   Lógicas no clásicas

Los sistemas lógicos no clásicos son aquellos que rechazan uno o varios de los principios de la lógica clásica. Algunos de estos sistemas son:
v  Lógica difusa: Es una lógica plurivalente que rechaza el principio del tercero excluido y propone un número infinito de valores de verdad.
v  Lógica relevante: Es una lógica paraconsistente que evita el principio de explosión al exigir que para que un argumento sea válido, las premisas y la conclusión deben compartir al menos una variable proposicional.
v  Lógica cuántica: Desarrollada para lidiar con razonamientos en el campo de la mecánica cuántica; su característica más notable es el rechazo de la propiedad distributiva.
v  Lógica no monotónica: Una lógica no monotónica es una lógica donde, al agregar una fórmula a una teoría cualquiera, es posible que el conjunto de consecuencias de esa teoría se reduzca.
v  Lógica intuicionista: Enfatiza las pruebas, en vez de la verdad, a lo largo de las transformaciones de las proposiciones.

 

D.  Lógicas modales

Las lógicas modales están diseñadas para tratar con expresiones que califican la verdad de los juicios. Así por ejemplo, la expresión «siempre» califica a un juicio verdadero como verdadero en cualquier momento, es decir, siempre. No es lo mismo decir «está lloviendo» que decir «siempre está lloviendo».

v  Lógica modal: Trata con las nociones de necesidad, posibilidad, imposibilidad y contingencia.
v  Lógica deóntica: Se ocupa de las nociones morales de obligación y permisibilidad.
v  Lógica temporal: Abarca operadores temporales como «siempre», «nunca», «antes», «después», etc.
v  Lógica epistémica: Es la lógica que formaliza los razonamientos relacionados con el conocimiento.
v  Lógica doxástica: Es la lógica que trata con los razonamientos acerca de las creencias.

 

METOLOGICA

Mientras la lógica se encarga, entre otras cosas, de construir sistemas lógicos, la metalógica se ocupa de estudiar las propiedades de dichos sistemas. Las propiedades más importantes que se pueden demostrar de los sistemas lógicos son:


A.   Consistencia

Un sistema tiene la propiedad de ser consistente cuando no es posible deducir una contradicción dentro del sistema. Es decir, dado un lenguaje formal con un conjunto de axiomas, y un aparato deductivo (reglas de inferencia), no es posible llegar a una contradicción.

B.   Decidibilidad

Se dice de un sistema que es decidible cuando, para cualquier fórmula dada en el lenguaje del sistema, existe un método efectivo para determinar si esa fórmula pertenece o no al conjunto de las verdades del sistema. Cuando una fórmula no puede ser probada verdadera ni falsa, se dice que la fórmula es independiente, y que por lo tanto el sistema es no decidible. La única manera de incorporar una fórmula independiente a las verdades del sistema es postulándola como axioma. Dos ejemplos muy importantes de fórmulas independientes son el axioma de elección en la teoría de conjuntos, y el quinto postulado de la geometría euclidiana.
C.   Completitud 
Se habla de completitud en varios sentidos, pero quizás los dos más importantes sean los de completitud semántica y completitud sintáctica. Un sistema S en un lenguaje L es semánticamente completo cuando todas las verdades lógicas de L son teoremas de S. En cambio, un sistema S es sintácticamente completo si, para toda fórmula A del lenguaje del sistema, A es un teorema de S o ¬A es un teorema de S. Esto es, existe una prueba para cada fórmula o para su negación. La lógica proposicional y la lógica de predicados de primer orden son ambas semánticamente completas, pero no sintácticamente completas. Por ejemplo, nótese que en la lógica proposicional, la fórmula p no es un teorema, y tampoco lo es su negación, pero como ninguna de las dos es una verdad lógica, no afectan a la completitud semántica del sistema. El segundo teorema de incompletitud de Gödel demuestra que ningún sistema (definido recursivamente) con cierto poder expresivo puede ser a la vez consistente y completo.

Falacias



Una falacia es un argumento que si bien puede ser convincente o persuasivo, no es lógicamente válido. Esto no quiere decir que la conclusión de los argumentos falaces sea falsa, sino que el argumento mismo es malo, no es válido.
Existen varias maneras de clasificar a la gran cantidad de falacias conocidas, pero quizás la más neutral y general (aunque tal vez un poco amplia), sea la que divide a las falacias en formales e informales.

Falacias formales.- son aquellas cuyo error reside en la forma o estructura de los argumentos. Algunos ejemplos conocidos de falacias formales son:

·         Afirmación del consecuente: Un ejemplo de esta falacia podría ser:
1.    Si María estudia, entonces aprobará el examen.
2.    María aprobó el examen.
3.    Por lo tanto, María estudió.
Esta falacia resulta evidente cuando advertimos que puede haber muchas otras razones de por qué María aprobó el examen. Por ejemplo, pudo haber copiado, o quizá tuvo suerte, o quizá aprobó gracias a lo que recordaba de lo que escuchó en clase, etc. En tanto es una falacia formal, el error en este argumento reside en la forma del mismo, y no en el ejemplo particular de María y su examen. La forma del argumento es la siguiente:
4.    Si p, entonces q.
5.    Q
6.    Por lo tanto, p.
·         Generalización apresurada: En esta falacia, se intenta concluir una proposición general a partir de un número relativamente pequeño de casos particulares. Por ejemplo:
1.    Todos las personas altas que conozco son rápidas.
2.    Por lo tanto, todas las personas altas son rápidas.
El límite entre una generalización apresurada y un razonamiento inductivo puede ser muy delgado, y encontrar un criterio para distinguir entre uno y otro es parte del problema de la inducción.

Falacias informales.- son aquellas cuya falta está en algo distinto a la forma o estructura de los argumentos. Esto resulta más claro con algunos ejemplos:

·         Falacia ad hominem: se llama falacia ad hominem a todo argumento que, en vez de atacar la posición y las afirmaciones del interlocutor, ataca al interlocutor mismo. La estrategia consiste en descalificar la posición del interlocutor, al descalificar a su defensor. Por ejemplo, si alguien argumenta: «Usted dice que robar está mal, pero usted también lo hace», está cometiendo una falacia ad hominem (en particular, una falacia tu quoque), pues pretende refutar la proposición «robar está mal» mediante un ataque al proponente. Si un ladrón dice que robar está mal, quizás sea muy hipócrita de su parte, pero eso no afecta en nada a la verdad o la falsedad de la proposición en sí.
·         Falacia ad verecundiam: se llama falacia ad verecundiam a aquel argumento que apela a la autoridad o al prestigio de alguien o de algo a fin de defender una conclusión, pero sin aportar razones que la justifiquen.
·         Falacia ad ignorantiam: se llama falacia ad ignorantiam al argumento que defiende la verdad o falsedad de una proposición porque no se ha podido demostrar lo contrario.
·         Falacia ad baculum: Se llama falacia ad baculum a todo argumento que defiende una proposición basándose en la fuerza o en la amenaza.
·         Falacia circular: se llama falacia circular a todo argumento que defiende una conclusión que se verifica recíprocamente con la premisa, es decir que justifica la vericidad de la premisa con la de la conclusión y viceversa, cometiendo circularidad.
·         Falacia del hombre de paja: Sucede cuando, para rebatir los argumentos de un interlocutor, se distorsiona su posición y luego se refuta esa versión modificada. Así, lo que se refuta no es la posición del interlocutor, sino una distinta que en general es más fácil de atacar. Tómese por ejemplo el siguiente diálogo:
Persona A: Sin duda estarás de acuerdo en que los Estados Unidos tienen el sistema legal más justo y el gobierno más organizado.
Persona B: Si los Estados Unidos son el mejor país del mundo, eso sólo significa que las opciones son muy pocas y muy pobres.
En este diálogo, la persona B puso en la boca de la persona A algo que ésta no dijo: que los Estados Unidos son el mejor país del mundo. Luego atacó esa posición, como si fuera la de la persona A.

Paradojas
Es un razonamiento en apariencia válido, que parte de premisas en apariencia verdaderas, pero que conduce a una contradicción o a una situación contraria al sentido común. Los esfuerzos por resolver ciertas paradojas han impulsado desarrollos en la lógica, la filosofía, la matemática y las ciencias en general.

LOS PRINCIPIOS LÓGICOS.
Los “principios lógicos” constituyen las verdades primeras, “evidentes” por sí mismas, a partir de las cuales se construye todo el edificio formal del pensamiento, según la Lógica tradicional. Dentro de una consideración los principios lógicos serán los preceptos o reglas “operantes” que rigen toda forma correcta de pensamiento.
El modo de considerar estos principios ha variado a través de la Historia de la Lógica y del pensamiento científico, pero la Lógica Formal ha coincidido en la formulación de cuatro principios lógicos, aunque el cuarto no es aceptado por todos los lógicos.
Tales principios son:
a.       Principio de identidad.
b.      Principio de Contradicción (o Principio de no-Contradicción).
c.       Principio de Exclusión del término medio (o Principio del medio excluido o Principio del tercero excluido o Principio del Tercer término excluido)
d.      Principio de Razón Suficiente.
Desde un punto de vista psicológico (aunque no desde la Psicología Científica sino de la Psicología Racional), serían las leyes generales de “operación del pensamiento”, es decir, las leyes que fundamentan los procesos lógicos.
Desde un punto de vista ontológico o metafísico, estos principios serían las determinaciones más generales del “ser” aún más generales que las categorías.
EL PRINCIPIO DE IDENTIDAD.
Fue formulado por primera vez como parte de una teoría de la realidad del “ser”. Ese principio afirmaba algo tan general como que “El ‘ser’ es”; esto puede ser explicado diciendo que “todo objeto es idéntico a sí mismo”.
Estas afirmaciones no son todavía lógicas, pero con el tiempo, se reflexiono sobre las implicaciones lógicas de ese principio, logrando la formulación lógico-formal del primer principio.  Esa formulación consistió en la afirmación de la verdad de un  juicio cuyo objeto sea idéntico al predicado (ese tipo de juicio se ha llamado “juicio analítico”). El primer principio lógico se ha resumido con la fórmula:
                                   “A es A”

EL PRINCIPIO DE CONTRADICCIÓN.
Este principio ha sido llamado tradicional e incorrectamente “principio de contradicción”, cuando lo que se enuncia es la imposibilidad de contradicción en el pensamiento.
Se trata del principio fundamental de la Lógica clásica que descarta cualquier posibilidad de contradicción en el pensamiento y en la realidad. La forma más plena del segundo principio es la que se refiere a la no-contradicción entre dos juicios, tal como se expresa en la fórmula:
                    “’A es A’ y ‘A no es A’ no son ambos verdaderos”


Y que se lee: El juicio ‘A es A’ y su contradictorio, el juicio ‘A no es A’ no pueden ser verdaderos a la vez. La forma original de este segundo principio es también ontológica y se formulaba de la siguiente manera: “El ser es y no puede a la vez no ser”.
EL PRINCIPIO DE EXCLUSIÓN DEL TÉRMINO MEDIO.
Como un complemento necesario del principio de no contradicción, se formula el principio de exclusión del término medio. En su forma original, se refería también a una estructura de la realidad y consistía en la afirmación de que no hay término medio entre el “ser” y el “no-ser”. En su forma lógica, este principio debe entenderse como afirmando que dos juicios contradictorios no pueden ser ambos falsos, tal como se sintetiza en al fórmula:
          “’A es A’ y ‘A no es A’ no son ambos falsos” y que se lee:  El juicio ‘A es A’ y su contradictorio, el juicio ‘A no es A’ no pueden ser falsos a la vez.
EL PRINCIPIO DE RAZÓN SUFICIENTE.
Este es, de los cuatro principios lógicos, el más discutido, pues  no todos los lógicos clásicos lo aceptan. Su formulación fue muy posterior a la de los otros, pues mientras los primeros tres se atribuyen a Parménides de Elea –quien vivió en el siglo V antes de nuestra era-, el cuarto principio fue formulado por Gottfried Wilhelm Leibniz aproximadamente en 1666, en plena Edad Moderna.
El cuarto principio se enuncia:
         “Nada es sin una razón suficiente”.
Y fue Christian Wolf en  1712 quien distinguió entre tres modos de entender este principio:
a) Como “razón de ser”,
b) Como “razón de llegar a ser”
c) Como “razón de conocer”.
Dentro de la Lógica tradicional, se ha entendido este cuarto principio en el tercero de los significados que propuso Wolf. Desde ese punto de vista, el principio puede ser formulado:  
           “Todo conocimiento tiene que estar fundado”.


 CONCLUSIÓN




Lo importante es que nuestro propósito es obtener y comunicar información y deseamos evitar los malentendidos el lenguaje mas útil es el que tiene menos impacto emotivo. Si nuestro interés es de carácter científico, haremos bien en evitar el lenguaje expresivo y en cultivos un conjunto de términos que sean, desde el punto de vista emotivo lo mas neutro posible.
Es en las ciencias físicas donde se ha hecho esto con mayor con mayor amplitud, los términos más antiguos y con estímulos emotivos, como "noble" y "bajo" para caracterizar metales, han sido desplazados por una jerga especial o, a través del tiempo se ha llegado a divorciarlos completamente de sus anteriores asociaciones honoríficas o despectivas. Este ha sido en factor que ha contribuido al progreso científico.


Con esta investigación hemos obtenido un amplio conocimiento sobre la Lógica y el Lenguaje, aunque con este material no es suficiente por lo amplio que este tema, pero nos dio una iniciación en la cátedra en estudio, con esto queremos decir que hemos entendido, en parte, la mayoría de los concepto y estudios referentes a los temas antes mencionados; estos temas nos han parecido bastante amplios e indispensables para nuestro crecimiento intelectual, ya que ellos nos sirven de herramienta para cualquier actividad en nuestra existencia, en especial con áreas de estudios y áreas de trabajo que se vinculan con lo estudiado, aunque no es demás decir que la Lógica y El Lenguaje se aplican a cualquier tema, seas social, científico, etc.